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Introduction and Motivation



Old Problems, New Challenges

Classical statistical learning and testing problem:

• Distribution learning

− Estimating the bias of a coin

• Hypothesis testing

− Testing whether a coin is fair

• Property estimation

− Estimating the Shannon entropy

Small domain, many samples, asymptotic analysis
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The Era of Big Data

2.5 quintillion(2.5× 1018) bytes of data are generated everyday1.

Huge success for ML and statistics, but new challenges.

1Data Never sleeps 6.0 by Domo, 2018
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Modern Challenges

Large domain, small sample

• Distributions over large domains/high dimensions

• Expensive data

• Sample complexity

Privacy

• Samples contain sensitive information

• Perform testing or learning while preserving privacy
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Privacy

Data may contain sensitive information.

Medical studies:

• Learn behavior of genetic mutations

• Contains health records or disease history

Navigation:

• Suggests routes based on aggregate positions of individuals

• Position information indicates users’ residence
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Private Inference

We want to explore privacy-sample complexity tradeoff.

• Sample complexity of non-private algorithm

• Additional cost due to privacy

Question: Is privacy expensive, cheap or even free?
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Differential Privacy (DP) [Dwork et al., 2006]

f̂ is ε-DP for any X n and Y n, with dHam(X n,Y n) ≤ 1, for all

measurable S ,

Pr
(
f̂ (X n) ∈ S

)
Pr
(
f̂ (Y n) ∈ S

) ≤ eε.

DP is widely adopted by the industry, e.g., Microsoft, and Google.
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From Non-private Algorithm to Private Algorithm

Sensitivity. The sensitivity of a non-private estimator f is

∆n,f := max
dHam(X n,Y n)≤1

|f (X n)− f (Y n)| .

Laplace Mechanism [Dwork et al., 2006]:

• Design a non-private estimator with low sensitivity

• Privatize this estimator by adding Laplace noise

X ∼ Lap(∆n,f /ε)
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Our Results

This talk will contain the following two works:

• Jayadev Acharya, Ziteng Sun, Huanyu Zhang, Differentially

Private Testing of Identity and Closeness of Discrete Distributions,

Spotlight presentation at NeurIPS 2018.

• Jayadev Acharya, Gautam Kamath, Ziteng Sun, Huanyu Zhang,

INSPECTRE: Privately Estimating the Unseen, ICML 2018.
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Differentially Private Identity

Testing



Motivating Example

Polish lottery Multilotek

• Choose “uniformly” at random distinct 20 numbers out of 1

to 80.

• Is the lottery fair?
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Motivating Example

No! Probability of 50− 59 too small!

The plot credits to ”Statistics vs Big Data” by Constantinos Daskalakis.
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Identity Testing (IT), Goodness of Fit

• [k] := {0, 1, 2, ..., k − 1}
• q : a known distribution

• Given X n := X1 . . .Xn independent samples from unknown p

• Is p = q?

• Tester: A : [k]n → {0, 1}, which satisfies the following:

With probability at least 2/3,

A(X n) =

1, if p = q

0, if |p − q|TV > α

• Sample complexity: Smallest n where such a tester exists
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Previous Results

Non-private:

S(IT ) = Θ
(√

k
α2

)
[Paninski, 2008]

• Lower bound intuition: Birthday Paradox

ε-DP algorithms: S(IT , ε) = O
(√

k
α2 +

√
k log k
α3/2ε

)
[Cai et al., 2017]

Problem: based on a χ2-test, which has high sensitivity.
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Our Results

Theorem

S(IT , ε) = Θ

(√
k

α2
+ max

{
k1/2

αε1/2
,

k1/3

α4/3ε2/3
,

1

αε

})
.
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Our Results

Theorem

S(IT , ε) = Θ

(√
k

α2
+ max

{
k1/2

αε1/2
,

k1/3

α4/3ε2/3
,

1

αε

})
.

• When ε→∞, S(IT, ε) = Θ
(√

k
α2

)
.

• When k is large, S(IT, ε) = Θ
(√

k
α2 + k1/2

αε1/2

)
, which is strictly

better than the previous result!
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Our Results

Theorem

S(IT , ε) = Θ

(√
k

α2
+ max

{
k1/2

αε1/2
,

k1/3

α4/3ε2/3
,

1

αε

})
.

New algorithms for achieving upper bounds

New methodology to prove lower bounds for hypothesis testing
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Reduction from Identity Testing to Uniformity Testing

Uniformity Testing (UT): Identity testing when q is a uniform

distribution over [k].
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Reduction from Identity Testing to Uniformity Testing

Uniformity Testing (UT): Identity testing when q is a uniform

distribution over [k].

[Goldreich, 2016] In the non-private case: Up to constant factors,

S(IT ) = S(UT )
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Reduction from Identity Testing to Uniformity Testing

Uniformity Testing (UT): Identity testing when q is a uniform

distribution over [k].

[Goldreich, 2016] In the non-private case: Up to constant factors,

S(IT ) = S(UT )

We proved this also hold for the private case: Up to constant

factors,

S(IT , ε) = S(UT , ε)
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Reduction from Identity Testing to Uniformity Testing

Uniformity Testing (UT): Identity testing when q is a uniform

distribution over [k].

[Goldreich, 2016] In the non-private case: Up to constant factors,

S(IT ) = S(UT )

We proved this also hold for the private case: Up to constant

factors,

S(IT , ε) = S(UT , ε)

It would be sufficient to only consider uniformity testing.
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Warm Up - Binary Case (Non-private)

Let q = B(0.5), p = B(b). Test whether b = 0.5 or α away.

Algorithm (hard threshold):

1. Let M1(X n) be the number of 1’s in the samples,

2. If 1
n

∣∣M1(X n)− n
2

∣∣ ≤ α
2 , output b = 0.5,

3. Else, output b 6= 0.5.

Analysis:

• Expectation Gap:

EX n∼B(0.5+α) [M1(X n)]− EX n∼B(0.5) [M1(X n)] ≥ αn.

• Variance of M1(X n): Var (M1(X n)) = O(n).

• By Chebyshev’s inequality, the sample complexity is O
(

1
α2

)
.
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Warm Up - Binary Case (Private)

Let q = B(0.5), p = B(b). Test whether b = 0.5 or α away.

Algorithm (soft threshold):

1. Let Z (X n) = M1(X n)− n
2 ,

2. Generate Y ∼ B(σ
(
ε · (|Z (X n)| − αn

2 )
)
), σ sigmoid function,

3. If Y = 0, output b = 0.5,

4. Else, output b 6= 0.5.

17



Algorithm Analysis

Lemma

The Algorithm is ε-DP. It has error probability at most 0.1, with

O
(

1
α2 + 1

αε

)
samples.

Reminder: Y ∼ B(σ
(
ε · (
∣∣M1(X n)− n

2

∣∣− αn
2 )
)
)

Proof idea:

• Privacy: For all x , γ ∈ R, exp(− |γ|) ≤ σ(x+γ)
σ(x) ≤ exp(|γ|).

• Sample complexity :

1. Consider the case when b = 0.5,

2. Z (X n) = O
(√

n
)

with high probability (Chebyshev),

3. Given n = O
(

1
α2

)
, αn

2 − |Z (X n)| = O(αn),

4. Given n = O
(

1
αε

)
, ε
(
|Z (X n)| − αn

2

)
< −1000.

5. Similar argument works for the case when |b − 0.5| > α.
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Upper Bound - General Case

Idea: Privatizing the statistic used by [Diakonikolas et al., 2017].

Let Mx be the number of samples of x ,

S(X n):=
1

2
·

k∑
x=1

∣∣∣∣Mx(X n)

n
− 1

k

∣∣∣∣ .
• Sample optimal in the non-private case.

• This statistic also has a small sensitivity!
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Upper Bound - General Case

S(X n) has the following two properties:

• Expectation gap [Diakonikolas et al., 2017]:

let µ(p) = EX n∼p [S(X n)], if dTV (u[k], p) > α,

µ(p)− µ(u[k]) ≥ cα2 min

{
n2

k2
,

√
n

k
,

1

α

}
.

• Small sensitivity:

∀X n, Y n with dHam(X n,Y n) ≤ 1, we have:

|S(X n)− S(Y n)| ≤ min

(
1

n
,

1

k

)
.
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Upper Bound - General Case

Algorithm 1: Private Uniformity Testing

Input: ε, α, i.i.d. samples X n from p

Let Z (X n) be defined as follows:

Z (X n):=


k
(
S(X n)− µ(u[k])− 1

2cα
2 · n2

k2

)
, when n ≤ k,

n
(
S(X n)− µ(u[k])− 1

2cα
2 ·
√

n
k

)
, when k < n ≤ k

α2 ,

n
(
S(X n)− µ(u[k])− 1

2cα
)
, when n ≥ k

α2 .

Generate Y ∼ B(σ(ε · Z (X n))), σ is the sigmoid function.

if Y = 0, return p = u[k], else return p 6= u[k]

Similar analysis also works here!
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Lower Bound - Coupling Lemma

Lemma

Suppose there is a coupling between p and q over X n (not

necessarily i.i.d.), such that E [dHam(X n,Y n)] ≤ D.

Then, any ε-differentially private hypothesis testing algorithm

satisfies

ε = Ω

(
1

D

)
.
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Lower Bound - Binary Case

For any distribution p1 and p2 over X with dTV (p1, p2) = α, if we

draw n samples i.i.d., there exists coupling with expected

Hamming distance O(αn). Then we have n = Ω
(

1
αε

)
.

If we take p1 = B(0.5) and p2 = B(0.5 + α), we get the exact

lower bound for binary case.

Problem: This bound doesn’t contain any dependency on k!
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Lower Bound - General case

Lemma

Suppose there is a coupling between p and q over X n (not

necessarily i.i.d.), such that E [dHam(X n,Y n)] ≤ D.

Then, any ε-differentially private hypothesis testing algorithm

satisfies

ε = Ω

(
1

D

)
.

Use LeCam’s two-point method.

Construct two hypotheses and a coupling between them with small

expected Hamming distance.
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Lower Bound - Proof Sketch

• Design the following hypothesis testing problem,

q: draw n i.i.d. samples from u[k].

p: a mixture of distributions:

1. generate the set of 2k/2 distributions, where for each

z ∈ {±1}k/2,

pz(2i − 1) =
1 + zi · 2α

k
, and pz(2i) =

1− zi · 2α
k

.

2. uniformly pick up one distribution, and generate n i.i.d.

samples according to it.

• Bound the coupling distance of uniform to mixture,

E [dHam(X n,Y n)] ≤ C · α2 min

{
n2

k
,
n3/2

k1/2

}
.

• Prove a lower bound by our coupling theorem.
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Some Intuition when Sparse

• Consider the following two distribution:

1. p1 = B(0.5),

2. p2 is a uniform mixture of B( 1
2 − α) and B( 1

2 + α).

• If we draw (t ≥ 2) samples, dTV (p1, p2) ≤ 2tα2 and the

expected hamming distance is bounded by 2t2α2.

• Now we consider the coupling between p and q, for every pair

of symbols, roughly appear 2n/k times in total.

• Therefore, the total coupling distance is k
2 ·

4n2α2

k2 = O
(
n2α2

k

)
.
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Closeness Testing (CT), Two Sample Test

• [k] = {0, 1, 2, ..., k − 1} is a discrete set of size k .

• p, q two unknown distributions over [k].

• X n = (X1,X2, ..,Xn) : n independent samples from p.

• Y n = (Y1,Y2, ..,Yn) : n independent samples from q.

• Tester: A : [k]n × [k]n → {0, 1}, which satisfies the following:

With probability at least 2/3,

A(X n,Y n) =

1, if p = q

0, if |p − q|TV > α
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Closeness Testing (CT), Two Sample Test

• [k] = {0, 1, 2, ..., k − 1} is a discrete set of size k .

• p, q two unknown distributions over [k].

• X n = (X1,X2, ..,Xn) : n independent samples from p.

• Y n = (Y1,Y2, ..,Yn) : n independent samples from q.

• Tester: A : [k]n × [k]n → {0, 1}, which satisfies the following:

With probability at least 2/3,

A(X n,Y n) =

1, if p = q

0, if |p − q|TV > α

S(CT ) = Θ
(
k2/3/α4/3 +

√
k/α2

)
[Chan et al., 2014]
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Our Results

Theorem

S(CT , ε) = O

(
max

{
k2/3

α4/3
+

√
k

α
√
ε
,

√
k

α2
+

1

α2ε

})
.

• When ε→∞, S(CT, ε) = O
(

k2/3

α4/3 +
√
k

α2

)
.

• When k is large, S(CT, ε) = Θ
(

k2/3

α4/3 +
√
k

α
√
ε

)
.
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Conclusion

• We establish a general coupling method to prove lower bounds

in DP.

• We derive the optimal sample complexity of DP identity

testing for all parameter ranges.

• We also give the sample complexity of DP closeness testing,

which is optimal in sparse case.

This work was accepted as spotlight presentation at NeurIPS 2018.
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Differentially Private Property

Estimation



Property Estimation

• p: unknown discrete distribution

• f (p): some property of distribution, e.g. entropy

• α: accuracy

• Input: i.i.d. samples X n from p

• Output f̂ : X n → R such that w.p. at least 2/3:∣∣∣f̂ (X n)− f (p)
∣∣∣ < α.

• Sample complexity: least n to estimate f (p)
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Private property estimation

Given i.i.d. samples from distribution p, the goals are:

• Accuracy : estimate f (p) up to ±α with probability > 2
3

• Privacy : estimator must satisfy ε-DP
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Private property estimation

Properties of interest:

• Entropy, H(p): the Shannon entropy

• Support Coverage, Sm(p): expected number of distinct

symbols in m draws from p

• Support Size, S(p): # symbols with non-zero probability
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Support Coverage - Motivating Example

• Corbett collected butterflies in Malaya for 1 year.

1 2 3 4 5 6 7 ...

118 74 44 24 29 22 20 ...

• Number of seen species = 118 + 74 + 44 + 24 + ...

How many new species can be found next year?
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Main results

The cost of privacy in private property estimation is often

negligible.
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Main results

Theorem 1. Sample complexity of support coverage:

O

(
m log(1/α)

logm
+

m log(1/α)

log(2 + εm)

)
.

Furthermore,

C (Sm, α, ε) = Ω

(
m log(1/α)

logm
+

1

αε

)
.

Privacy is free unless ε < 1√
m

. Similar bounds hold for other

properties.
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Laplace mechanism

Sensitivity. The sensitivity of an estimator f is

∆n,f := max
dHam(X n,Y n)≤1

|f (X n)− f (Y n)| .

Our algorithms use Laplace Mechanism [Dwork et al., 2006].

• Compute a non-private estimator with low

sensitivity [Acharya et al., 2017]

• Privatize this estimator by adding Laplace noise

X ∼ Lap(∆n,f /ε)
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Laplace mechanism (support coverage)

We borrow the following non-private estimator

(SGT) [Orlitsky et al., 2016] with low sensitivity:

Ŝm(X n) = Σn
i=1Φi

(
1 + (−t)i · Pr (Z ≥ i)

)
,

where Φ is the profile of X n, Z ∼ Poi(r) and t = (m − n)/n.

Lemma 1. When t ≥ 1, the sensitivity of the estimator satisfies

∆

(
Ŝm(X n)

m

)
≤ 2

m
·
(

1 + er(t−1)
)
.
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Lower Bound - Coupling Lemma

Lemma

Suppose there is a coupling between p and q over X n, such that

E [dHam(X n,Y n)] ≤ D

Then, any ε-differentially private hypothesis testing algorithm must

satisfy

ε = Ω

(
1

D

)
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Support Coverage - Lower bound

Consider the following two distributions:

• u1 is uniform over [m(1 + α)].

• u2 is distributed over m + 1 elements [m] ∪ {4} where

u2[i ] = 1
m(1+α) ,∀i ∈ [m] and u2[4] = α

1+α .

We know

Sm(u1)− Sm(u2) = Ω(αm).

Moreover, their total variation distance is α
1+α . So the coupling

distance is mα
1+α .
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Support coverage estimation on synthetic data

• Given n = 10000 samples, then estimate the support coverage

at m = n · t, t = 1, 2, ...

• Comparison on performance (RMSE) of private and

non-private estimator.
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Support coverage estimation on real data

• Comparison on performance (RMSE) of private and

non-private estimator

• The dataset: 2000 US Census data, and Hamlet
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Conclusion

1. Our upper bounds show that the cost of privacy in these

settings is often negligible compared to the non-private

statistical task.

2. We derive lower bound for these problems by reducing them

into binary hypothesis testing.

3. Our methods are realizable in practice, and we demonstrate

their effectiveness on several synthetic and real-data examples.

This work was accepted by ICML 2018.
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Thank you!
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